Using g = 9.8 m/s2, the statement that best describes the roller coaster car when it is at the top of the loop-de-loop is that The car has both potential and kinetic energy, and it is moving at 24.6 m/s.
The correct answer is <span>B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
Answer:
f = 485.62 N
Explanation:
Since, the bag is moving with some acceleration. Hence, the unbalanced force will be given as:
Unbalanced Force = Horizontal Component Applied Force - Frictional Force
Unbalanced Force = Fx - f
But, from Newtons Second Law of Motion:
Unbalanced Force = ma
comparing the equations:
ma = Fx - f
f = F Cos θ - ma
where,
f = frictional force = ?
F = Applied force = 593 N
m = mass of person = 49 kg
a = acceleration = 0.57 m/s²
θ = Angle with horizontal = 30°
Therefore,
f = (593 N)(Cos 30°) - (49 kg)(0.57 m/s²)
f = 513.55 N - 27.93 N
<u>f = 485.62 N</u>
I believe the correct response would be B. It would decrease.
Answer:
True
Explanation:
This is a representation of Gauss law.
Gauss’s law does hold for moving charges, and in this respect Gauss’s law is more general than Coulomb’s law. In words, Gauss’s law states that: The net outward normal electric flux through any closed surface is proportional to the total electric charge enclosed within that closed surface. The law can be expressed mathematically using vector calculus in integral form and differential form, both are equivalent since they are related by the divergence theorem, also called Gauss’s theorem.