Answer:
18 m
Explanation:
G = Gravitational constant
m = Mass of planet = 
= Density of planet
V = Volume of planet assuming it is a sphere = 
r = Radius of planet
Acceleration due to gravity on a planet is given by

So,

Density of other planet = 
Radius of other planet = 

Since the person is jumping up the acceleration due to gravity will be negative.
From kinematic equations we have

On the other planet

The man can jump a height of 18 m on the other planet.
Answer:
The intensity of laser 2 is 4 times of the intensity of laser 1.
Explanation:
The intensity in terms of electric field is given by :

E is electric field
It means, 
In this problem, lasers 1 and 2 emit light of the same color, and the electric field in the beam of laser 1 is twice as strong as the e-field of laser 2.
Let E is electric field in the beam of laser 1 and E' is the electric field in the beam of laser 2. So,

We have,
E'=2E
So,

So, the intensity of laser 2 is 4 times of the intensity of laser 1.
J=joules, c=specific heat, q= energy, and the Tf and Ti are the final and initial temperatures cause I couldn't find a delta sign.
Answer:
See Explanation
Explanation:
m1(v1) + m2(v2)
Opposite turns the plus to subtraction.
80(8) - 120(4.0)
60 - 480 = 160 kg m/s to the right