Answer:
Increases in temperature tend to decrease density since volume will generally increase. There are exceptions however, such as water's density increasing between 0°C and 4°C. Below is a table of units in which density is commonly expressed, as well as the densities of some common materials.
Explanation:
Moles = mass / molar mass
<span>moles P = 0.422 g / 30.97 g/mol = 0.01363 mol </span>
<span>moles O = (0.967 g - 0.422g) / 16.00 g/mol = 0.03406 moles </span>
<span>So ratio moles P : moles O </span>
<span>= 0.01363 mol : 0.03406 mol </span>
<span>Divide each number in the ratio by the smallest number </span>
<span>(0.01363 / 0.01363) : (0.03406 / 0.01363) </span>
<span>= 1 : 2.5 </span>
<span>The empirical formula needs to be the smallest whole number ratio of atoms in the molecules. Since you have a non-whole number, multiply the ratio by the smallest number needed to make both number whole numbers. In this case x 2 </span>
<span>2 x (1 : 2.5) </span>
<span>= 2 : 5 </span>
<span>"They have different numbers of neutrons and different mass numbers. Remember mass number is protons plus neutrons. The number of protons for an element will never change, however the number of neutrons can." I took the test, its D</span>
Answer:
in the attached image is the reaction mechanism.
Explanation:
The first reaction (reaction 1) shown in the attached image is the Wolff-Kishner reduction, which is characterized when the carbonyl is reduced to an alkane in the presence of a hydrazine and a base. In reaction 1, the aldehyde reacts with hydrazine to produce oxime. This mechanism begins with the attack of the amine on the carbonyl group. Proton exchange happens and the water leaves the molecule.
In reaction 2, the KOH is deprotoned in nitrogen and organized to form the bond between the nitrogen molecule. this deprotonation releases the nitrogen gas
Answer:
0.052636002587839 moles
Explanation:
im not sure so sorry if u get it wrong...