By a black hole, the sky looks normal then the stars closer to the black holes look like they are spinning around the black hole.
Answer:
e. The torque is the same for all cases.
Explanation:
The formula for torque is:
τ = Fr
where,
τ = Torque
F = Force = Weight (in this case) = mg
r = perpendicular distance between force an axis of rotation
Therefore,
τ = mgr
a)
Here,
m = 200 kg
r = 2.5 m
Therefore,
τ = (200 kg)(9.8 m/s²)(2.5 m)
<u>τ = 4900 N.m</u>
<u></u>
b)
Here,
m = 20 kg
r = 25 m
Therefore,
τ = (20 kg)(9.8 m/s²)(25 m)
<u>τ = 4900 N.m</u>
<u></u>
c)
Here,
m = 8 kg
r = 62.5 m
Therefore,
τ = (8 kg)(9.8 m/s²)(62.5 m)
<u>τ = 4900 N.m</u>
<u></u>
Hence, the correct answer will be:
<u>e. The torque is the same for all cases.</u>
Answer:
The power of the distance is -1.
Explanation:
The equation for the electric potential of a point charge is given by 
where V is the electric potential, k is Coulomb's constant (it has a value of
with units
), q is the electric charge of the small charge and r is the distance from the charge.
Now, the power of a number is how many times we multiply that number by itself; we see r appears only once in the equation. So we know the power is 1. But we can see in the equation that k and q are divided by r, which means r is the denominator. This means the power of r is negative (-).
Therefore, the power of r is -1.
Answer:
Her speed is 9.8 meter per second
Explanation:
Newton's second law states that acceleration (a) is related with force (F) by:
(1)
Here the only force acting on the firefighter is the weight F=mg so (1) is:
Solving for a:

Now with the acceleration we can use the Galileo's kinematic equation:
(2)
With Vf the final velocity, Vo the initial velocity and Δx the displacement, because the firefighter stars from rest Vo=0 so (2) is:

Solving for Vf


Answer:Im guessing Mechanical Energy
Explanation:
We are learning that work and energy work hand in hand so im completely guessing this