Answer:
1.-E=1000N/C to the LEFT
2.-The electric field inside a conductor in electrostatic state is always zero (conductor proprieties).
3.-The voltmeter read 0V as differential voltage between two points from the conductor
Explanation:
1.The electric field inside the conductor must be zero (conductor proprieties). Then the charges create a electric field equal an opposite to the external electric field. In other words E=1000N/C to the LEFT
2. The electric field inside a conductor in electrostatic state is always zero. As shown in the figure the electric field induced by the charges in the sphere surface cancelled the EXTERN electric field.
3.If the Electric field inside the conductor is zero, that means that the Voltage in the hole conductor is constant (conductor proprieties). In other words the the voltmeter read 0v as differential voltage between two points from the conductor.
In theory, yes. The 2 problems are the materials used for clinical thermometers, & the temperature capacity of the clinical thermometer. If anything, change the material & extend the measurement threshold. At that point, it wouldn´t be used for clinical garbage anymore.

Explanation:
The acceleration due to gravity g is defined as

and solving for R, we find that

We need the mass M of the planet first and we can do that by noting that the centripetal acceleration
experienced by the satellite is equal to the gravitational force
or

The orbital velocity <em>v</em> is the velocity of the satellite around the planet defined as

where <em>r</em><em> </em>is the radius of the satellite's orbit in meters and <em>T</em> is the period or the time it takes for the satellite to circle the planet in seconds. We can then rewrite Eqn(2) as

Solving for <em>M</em>, we get

Putting this expression back into Eqn(1), we get




D ............................
<h2>Answer</h2>
option D)
2.4 seconds
<h2>Explanation</h2>
Given in the question,
mass of car = 1200kg
speed of car = 19m/s
Force due to direction of travel
F = ma
= 12000(a)
Force to due frictional force in reverse direction
-F = mg(friction coefficient)
= -12000(9.81)(0.8)
<h2>
-mg(friction coefficient) = ma </h2>
(cancelling mass from both side of equation)
g(0.8) = a
(9.81)(0.8) = a
a = 7.848 m/s²
<h2>Use Newton Law of motion</h2><h3>vf - vo = a • t</h3>
where vf = final velocity
vo = initial velocity
a = acceleration
t = time
0 - 19 = 7.8(t)
t = 19/7.8
= 2.436 s
≈ 2.4s