Answer:
The acceleration is 8 m/s²
Explanation:
The given parameters are;
The initial velocity, u = 2 m/s
The final velocity, v = 6 m/s
The distance the acceleration took place, s = 2 m
The acceleration, a, can be found from the following kinematic equation;
v² = u² + 2·a·s
By substituting the values, we have;
6² = 2² + 2 × a × 2
6² - 2² = 2 × a × 2
32 = 4·a
a = 32/4 = 8 m/s²
The acceleration, a, of the given motion = 8 m/s².
Explanation:
observation is something what you could observe from your organs like eyes ears etc and also it is what you observed during an event for an experiment but inference is what you decide to do after observation or an event.
the act of inferring (to derive by reasoning). Observation = an act or instance of noticing or perceiving.
Thank u!
Explanation:
It is given that,
The ramp is tilted upwards at 25 degrees and Paul is pulling a large crate up the ramp with a rope that angles 10° above the ramp.
Total angle with respect to ramp is 35 degrees.
If Paul pulls with a force of 550 N.
The horizontal component of the force is given by :



The vertical component of the force is given by :



Hence, this is the required solution.
Answer:
Image B represents the force on a positively charged particle caused by an approaching magnet.
Explanation:
The most fundamental law of magnetism is that like shafts repulse each other and dissimilar to posts pull in one another; this can without much of a stretch be seen by endeavoring to put like posts of two magnets together. Further attractive impacts additionally exist. On the off chance that a bar magnet is cut into two pieces, the pieces become singular magnets with inverse shafts. Also, pounding, warming or winding of the magnets can demagnetize them, on the grounds that such dealing with separates the direct game plan of the particles. A last law of magnetism alludes to maintenance; a long bar magnet will hold its magnetism longer than a short bar magnet. The domain theory of magnetism expresses that every single enormous magnet involve littler attractive districts, or domains. The attractive character of domains originates from the nearness of significantly littler units, called dipoles. Iotas are masterminded in such a manner in many materials that the attractive direction of one electron counteracts the direction of another; in any case, ferromagnetic substances, for example, iron are unique. The nuclear cosmetics of these substances is with the end goal that littler gatherings of particles unite as one into zones called domains; in these, all the electrons have the equivalent attractive direction.
In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required