Answer:
tri-
Explanation:
Examples could be Tri-angle, Tri-cycle, Tri-ceratops
Answer:
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
Explanation:

Moles of copper = 
According to reaction, 1 mol of copper gives 2 moles of nitrogen dioxide gas.
Then 0.03613 moles of copper will give:
of nitrogen dioxide gas
Moles of nitrogen dioxide gas = n = 0.06326 mol
Pressure of the gas = P
P = Total pressure - vapor pressure of water
P = 726 mmHg - 23.8 mmHg = 702.2 mmHg
P = 0.924 atm (1 atm = 760 mmHg)
Temperature of the gas = T = 25.0°C =298.15 K
Volume of the gas = V


V = 1.68 L
The volume of NO₂ gas collected over water at 25.0 °C is 1.68 Liters.
Answer:
what
Explanation:
ummm I... . .. .. . . . . . . . . .
7 moles of oxygen are in the sample.
According to the chemical formula, each mole of nickel tetracarbonyl contains 4 moles of C atoms. Simply convert it into a fraction by putting the original solution in the denominator and the diluted solution in the numerator if you need to determine the concentration ratio between two solutions. The V/n ratio for each gas must be the same if the two gases are at the same temperature and pressure. The volume ratio of two gases at the same temperature and pressure is equal to their molar ratio. The mole ratio of C to O is 1 : 1
Learn more about moles here brainly.com/question/10873665
#SPJ1.
Answer: Volume of CO2 is 89127 mL
Explanation: The reaction that takes place is: C2H2 + O2 --> CO2 + H2O
The amount of C2H2 that react allow us to predict the amount of CO2 that will be obtained

26g/1mol is molar mass of C2H2 and 2/4 is the molar relation between CO2 and C2H2 in this reaction. Canceling units, at the end mol of CO2 are obtained
Now with the moles of CO2 and the ideal gases equation is possible to calculate the volumen occupied by the gas.
PV = RnT where P: pressure, V: volume, R: ideal gas constant, n: moles and T: temperature expressed in K (add 273,15 to °C temperature: 37,4°C + 273,15 = 310,55K)
V= RnT/P

To express volume in mL multiply the L result by 1000 which equals 89127 mL