The proton transfer reaction between Cyanide and water can be written as; X^- + H2O -----> HX + OH^-
<h3>What is a proton transfer reaction?</h3>
A proton transfer reaction is one in which a proton is moved from one chemical specie to another.It is in fact and acid - base reaction in the Brownstead - Lowry sense.
The proton transfer reaction between Cyanide and water can be written as(Let the cyanide ion be shown as X);
X^- + H2O -----> HX + OH^-
Learn more about proton transfer: brainly.com/question/861100?
Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
Answer:
c The concentration(s) of reactant(s) is constant over time.
Step-by-step explanation:
When the reaction A ⇌ B reaches equilibrium, the concentrations of reactants and products are constant over time.
a is <em>wrong</em>, because the concentrations of reactants and products are usually quite different.
b is <em>wrong</em>, because both product and reactant molecules are being formed at equilibrium.
d is <em>wrong</em>. The rates of the forward and reverse reactions are equal, but they are not zero.
Balanced equation:
<span>2 NO + 5 H2 ------> 2 NH3 + 2 H2O
</span>
<span>2 moles NO react with 5 moles H2 to produce 2 moles NH3
</span>
<span>Molar mass of NO = 30.00 g/mol </span>
<span>86.3g NO = 86.3/30.00 = 2.877 moles of NO </span>
<span>This will require: 2.877*5 / 2 = 7.192 moles of H2 </span>
<span>Molar mass of H2 = 2 g/mol </span>
<span>25.6g H2 = 25.6/2 = 12.7 mol H2. </span>
<span>You have excess H2 means the NO is limiting </span>
<span>From the balanced equation: </span>
<span>2 moles of NO will produce 2 moles of NH3 </span>
<span>2.877 moles of NO will produce 2.877 moles of NH3 </span>
<span>Molar mass NH3 = 17g/mol </span>
<span>Mass NH3 produced = 2.877 * 17 = 48.91g
Hence the yield is = 48.91 g ~ 49 g</span>