Answer:
It is not normally distributed as it has it main concentration in only one side.
Step-by-step explanation:
So, we are given that the class width is equal to 0.2. Thus we will have that the first class is 0.00 - 0.20, second class is 0.20 - 0.40 and so on(that is 0.2 difference).
So, let us begin the groupings into their different classes, shall we?
Data given:
0.31 0.31 0 0 0 0.19 0.19 0 0.150.15 0 0.01 0.01 0.19 0.19 0.53 0.53 0 0.
(1). 0.00 - 0.20: there are 15 values that falls into this category. That is 0 0 0 0.19 0.19 0 0.15 0.15 0 0.01 0.01 0.19 0.19 0 0.
(2). 0.20 - 0.40: there are 2 values that falls into this category. That is 0.31 0.31
(3). 0.4 - 0.6 : there are 2 values that falls into this category.
(4). 0.6 - 0.8: there 0 values that falls into this category. That is 0.53 0.53.
Class interval frequency.
0.00 - 0.20. 15.
0.20 - 0.40. 2.
0.4 - 0.6. 2.
Hey there! I am on the same one. :) I will help you out a little.
<span>Assume that all six outcomes of a six-sided number cube have the same probability. What is the theoretical probability of each roll?
• 1: 1/6
• 2: 2/6
• 3: 3/6
• 4: 4/6
• 5: 5/6
• 6: 6/6
</span>
<span>Using the uniform probability model you developed, what is the probability of rolling an even number?
1/6 Roll a number cube 25 times. Record your results here.
</span><span>
<span><span>
<span>
<span>1st
toss=</span>6</span>
</span>
<span>
<span>
<span>2nd
toss=</span>4</span>
</span>
<span>
<span>
<span>3rd
toss=</span>6</span>
</span>
<span>
<span>
<span>4th
toss=</span>6</span>
</span>
<span>
<span>
<span>5th
toss=</span>3</span>
</span>
<span>
<span>
<span>6th
toss=</span>3</span>
</span>
<span>
<span>
<span>7th
toss=</span>4</span>
</span>
<span>
<span>
<span>8th
toss=</span>2</span>
</span>
<span>
<span>
<span>9th
toss=</span>6</span>
</span>
<span>
<span>
<span>10th
toss=</span>5</span>
</span>
<span>
<span>
<span>11th
toss=</span>1</span>
</span>
<span>
<span>
<span>12th
toss=</span>4</span>
</span>
<span>
<span>
<span>13th
toss = </span>5</span>
</span>
<span>
<span>
<span>14th
toss =</span>1</span>
</span>
<span>
<span>
<span>15th
toss=</span>4</span>
</span>
<span>
<span>
<span>16th
toss=</span>2</span>
</span>
<span>
<span>
<span>17th
toss=</span>2</span>
</span>
<span>
<span>
<span>18th
toss=</span>2</span>
</span>
<span>
<span>
<span>19th
toss=</span>6</span>
</span>
<span>
<span>
<span>20th
toss=</span>5</span>
</span>
<span>
<span>
<span>21st
toss=</span>3</span>
</span>
<span>
<span>
<span>22nd
toss=</span>4</span>
</span>
<span>
<span>
<span>23rd
toss=</span>3</span>
</span>
<span>
<span>
<span>24th
toss=</span>3</span>
</span>
<span>
<span>
25
toss=5
How
many results of 1 did you have? __2____________ How
many results of 2 did you have? ____4__________ How
many results of 3 did you have? ____5__________ How
many results of 4 did you have? ______5________ How
many results of 5 did you have? ______4________
How
many results of 6 did you have? ______5________
Based
on your data, what is the experimental probability of each roll?
<span>
1. 2/25 or 0.08
2. 4/25 or 0.16
3. 5/25 or 0.24
4. 5/25 or 0.2
5.4/25 or 0.16
<span>
6. 5/25 or 0.2</span></span>Using
the probability model based on observed frequencies, what is the probability of
rolling an even number?
3/6 = ½ or 0.5
Was your experimental probability
different than your theoretical probability? Why or why not?
<span>It somewhat is! The
denominator is 25 for the experimental probability, and 6 for the theoretical
probability.</span><span>
</span><span>Have a lovely day! Cheerio. :) </span></span>
</span>
</span></span>
6/7 (85%) is bigger than 3/4 (75%)