Answer:
a) The final equilibrium temperature is 83.23°F
b) The entropy production within the system is 1.9 Btu/°R
Explanation:
See attached workings
Answer:
w = 10.437 kips
deflection at 1/4 span 20.83\E ft
at mid span = 1.23\E ft
shear stress 7.3629 psi
Explanation:
area of cross section = 18*76
length of span = 32 ft
moment = 334 kips-ft
we know that
moment = load *eccentricity
334 = w * 32
w = 10.437 kips
deflection at 1/4 span



= 20.83\E ft
at mid span



shear stress

Answer:
If the heat engine operates for one hour:
a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.
b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.
In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.
Explanation:
The Carnot efficiency is obtained as:

Where
is the atmospheric temperature and
is the maximum burn temperature.
For the case (B), the efficiency we will use is:

The work done by the engine can be calculated as:
where Hv is the heat value.
If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

Answer:
ΔQ = 4930.37 BTu
Explanation:
given data
height h = 8ft
Δt = 8 hours
length L = 24 feet
R value = 16.2 hr⋅°F⋅ft² /Btu
inside temperature t1 = 68°F
outside temperature t2 = 16°F
to find out
number of Btu conducted
solution
we get here number of Btu conducted by this expression that s
......................1
here A is area that is = h × L = 8 × 24 = 1492 ft²
put here value we get
solve it we get
ΔQ = 4930.37 BTu