<span>You must balance your equation correctly.
Here is your answer:
294gFeS2 x 1molFeS2/119.99 x 11mols O2/4mols FeS2--> 6.738mol O2
176gO2 x 1mol O2/32gO2 x 4mols FeS2/11mol FeS2--> 2mols FeS2
Now choose the molecule with the lowest amount (Limiting Reagent)
2molsFeS2 x 2molsFe2O3/4molsFeS2 x 159.7g
159.7g Fe2O3 grams produced.</span>
Molar volume is a property of a component in a solution. It is defined as the volume occupied by one mole of the component in the closed system. You would not expect all solutions to execute volume additivity because intermolecular forces between the components come into play. There is no such thing as conservation of volume.
Vapor pressure affects molar volume because gases are very sensitive by these process conditions. Vapor pressure is very temperature-dependent. Consequently, at a different temperature, your component could expand or compress, thus, affecting the molar volume. Moreover, the pressure affects the molecular collisions in the system.
The answer lies in the stoichiometry of the reaction. If u look at the number BEFORE the reagent u will see the ratios of the reagents.
The mass (g) of the original sample after decomposition is 8.3983 g.
A decomposition reaction can be described as a chemical reaction wherein one reactant breaks down into or extra merchandise.
explanation:
Reaction 2KClO₃ ⇒ 2KCl + 3O₂
moles 2 2 3
molar mass 122.55 74.55 32
Given, Mass of O₂ = 3.29g ⇒ moles of O₂
= (3.29/32) = 0.1028
3 moles of O₂ produced by 2 moles of KClO₃
Therefore, 0.1028 moles of O₂ produced by (2*0.1028/3) = 0.06853 moles of Kclo₃
Mass of KClo₃ in original sample is = moles * molar mass
= 0.06853 * 122.55
= 8.3983 g
A decomposition response occurs whilst one reactant breaks down into or extra merchandise. this may be represented through the general equation: XY → X+ Y. Examples of decomposition reactions consist of the breakdown of hydrogen peroxide to water and oxygen, and the breakdown of water to hydrogen and oxygen.
Learn more about decomposition here:-brainly.com/question/27300160
#SPJ4