1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Readme [11.4K]
3 years ago
7

Alex rides her bike at 12.0 km/hr for 2.25 hr. what distance has alex traveled?

Physics
1 answer:
Ymorist [56]3 years ago
6 0

Answer: Alex traveled a distance of 27.0 km in 2.25 hours.  

Further Explanation:

Speed is how fast an object moves or how far an object travels per unit time. If the distance traveled and the total time of travel are known, the speed can be calculated using the formula:

speed \ = \frac{distance}{time}

In the problem, we are given:

speed = 12.0 km/hr

time = 2.25 hr

We are looking for the distance traveled by Alex which can be represented by the variable d.

We can solve for d by manipulating the speed formula to get the equation:

distance, d \ = \ (speed)(time)[/tex]

Plugging in our values for speed and time, we get the equation:

distance \ = \ (12.0 \ \frac{km}{hr})(2.25 \ hr)\\ \boxed {distance,d\ = \ 27.0 \ km}

Since the number of significant figures of the given is 3, the answer must be expressed with 3 significant figures, too.

Thus, the distance Alex traveled for 2.25 hours at a speed of 12.0 km/hr is 27.0 km.

Learn More

  1. Learn more about Velocity brainly.com/question/862972
  2. Learn more about Acceleration brainly.com/question/4134594
  3. Learn more about Distance - Time Graphs brainly.com/question/1378025

Keywords: speed, distance, kinematics

You might be interested in
2 Which is true of a parallel circuit?
mars1129 [50]

Answer:

fxb

c

Explanation:bfffffffff

8 0
3 years ago
1. When you have different masses for each sphere, how does the force that the larger mass sphere exerts on the smaller mass sph
aleksandrvk [35]

1) The forces are equal (Newton's third law of motion)

2) The force between the spheres will quadruple

3) The force of gravity exerted by the notebook on you is negligible

Explanation:

1)

In this part of the problem, we want to compare the gravitational force exerted by the larger mass sphere on the smaller mass sphere to the force exerted by the smaller mass sphere to the larger mass sphere.

We can do this by using Newton's third law of motion, which states that:

<em>"When an object A exerts a force (called </em><em>action</em><em>) on an object B, then object B exerts an equal and opposite force (called </em><em>reaction</em><em>) on object A"</em>

In this problem, we can identify the larger mass sphere as object A and the smaller mass sphere as object B. This law tells us that the two forces are equal in magnitude and opposite in direction: therefore, the gravitational force exerted by the larger mass sphere on the smaller mass sphere is equal to the force exerted by the smaller mass sphere to the larger mass sphere.

2)

The magnitude of the gravitational force between the two spheres is given by

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m_1, m_2 are the masses of the two spheres

r is the separation between the two spheres

In this problem, we are asked to find what happens when the distance between the spheres is halved, therefore when the new distance is

r'=\frac{r}{2}

Substituting into the equation, we find

F'=G\frac{m_1 m_2}{r'^2}=G\frac{m_1 m_2}{(r/2)^2}=4(\frac{Gm_1 m_2}{r^2})=4F

So, the force between the two spheres will quadruple.

3)

We can give an estimate for the gravitational force exerted by your notebook on you.

As we said, the magnitude of the gravitational force is

F=G\frac{m_1 m_2}{r^2}

Where:

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

Let's estimate the following:

m_1 = 60 kg is your mass

m_2 = 2 kg is the mass of the notebook

r=1 m, assuming the notebook is at 1 metre from you

Substituting,

F=(6.67\cdot 10^{-11})\frac{(60)(2)}{1^2}=8.0\cdot 10^{-9} N

We see that this force has an extremely small value: therefore, it is almost negligible in daily life, where other much stronger forces act on you.

Learn more about gravity:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

8 0
3 years ago
Bosons &amp; Fermions A new type of quantum object has been discovered. When a large collection of these are cooled to almost ab
Lena [83]

Answer:

Only 2,3,4 are true

Explanation:

Bosons Particles are particles that condense to the same state. Bosons particle have integral spin like 0 , $\hbar$, 2$\hbar, 3$\hbar$, etc. Bosons particles always have asymmetric wave function and there is exchange of particles.

1) It does not obey Fermi_ Dirac statistics

2) It obeys Bose-Einstein statistics

3) The object can have intrinsic spin 2$\hbar

4) Yes the Bosons particle is always symmetric with exchange of particles

5) No Bosons particle are symmetric and not asymmetric

5 0
3 years ago
Two objects are moving at equal speed along a level, frictionless surface. the second object has twice the mass of the first obj
lbvjy [14]

Answer:

They both rises to same height.

Explanation:

When an object is sliding up in friction less surface than according to conservation of energy its potential energy will be converted into kinetic energy.

mgH=\frac{1}{2}mv^{2}\\ v=\sqrt{2gH}

Here, m is the mass, v is the velocity, g is the acceleration due to gravity and H is the height.

Here the height is independent on the mass of an object and its only depend on velocity.

Now according to the question, two objects have same velocity but they have different masses.

Therefore, they rises to the same height because  height will not change with mass.

8 0
3 years ago
Read 2 more answers
In mammals, the weight of the heart is approximately 0.5% of the total body weight. Write a linear model that gives the heart we
hammer [34]

Answer:

1201 lbs

Explanation:

Given that in mammals, the weight of the heart is approximately 0.5% of the total body weight.

Let the weight of the heart of a mammal be H

And the weight of the total body be B

The linear model that can gives the heart weight in terms of the total body weight will be:

H = 0.005B

B.) To find the weight of the heart of a whale whose weight is 2.402 × 105 lbs, substitute the whole weight in the formula.

H = 0.005 × 2.402 × 10^5

H = 1201 lbs

Therefore, the weight of the heart of the whale is 1201 lbs

8 0
3 years ago
Other questions:
  • The voltage across a membrane forming a cell wall is 72.7 mV and the membrane is 9.22 nm thick. What is the magnitude of the ele
    5·1 answer
  • Cardiovascular exercise can
    15·2 answers
  • A 76-kg ball is tied to one end of a massless string of length 1.3 m. The other end of the string is tied to a nail in the cente
    15·2 answers
  • A wedge is simply a form of an inclined plane. TRUE or FALSE.
    12·1 answer
  • An electromagnetic wave travels in a vacuum. The wavelength of the wave is tripled. How is this accomplished?
    9·1 answer
  • Please Help!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11
    6·1 answer
  • What are the potential obstacles preventing you from completing your exercises as scheduled? How can you overcome those obstacle
    9·1 answer
  • Un resorte se alarga 5 cm bajo la acción de una fuerza de 39,2 N. ¿Cuál es la constante del resorte? Si ahora la fuerza es 68,6
    10·1 answer
  • The significant feature of a Cepheid variable is that there is a relationship between two intrinsic parameters, one of which can
    12·1 answer
  • What is another way to describe the vector below?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!