Answer:
a. Theoretical yield = 8.81 g
b. 77 %
Explanation:
We begin from the reaction:
2Fe (s) + 3Cl₂ (g) → 2FeCl₃ (s)
and the excess is the iron, so the limiting reagent is the chlorine.
We convert mass to moles → 5.78 g / 70.90 g/mol = 0.0815 mol
Ratio is 3:2 so we think this:
From 3 moles of chlorine, I can produce 2 moles of Iron (III) chloride
Then 0.0815 moles would produce (0.0815 . 2) /3 = 0.0543 moles
This is the theoretical yield. We convert the moles to mass:
0.0543 mol . 162.2 g /mol = 8.81 g
If the reaction yields 6.79 g of FeCl₃ and the theoretical yield is 8.81 g ,we can obtain the percent yield: (6.79 / 8.81) . 100 = 77 %
A.) Phosphate ion or Orthophosphate
d.) Hydroxide
D.) Ammonium
e.) Iron
C.) Nitrate
f.) Sulfur dioxide
Answer:
C. Solid in liquid
Explanation:
Seawater is an example of a solid in liquid solution.
Sea water is made up of:
- water
- mineral salts
- dissolved gases
A liquid solution is always made up of a solute being dispersed within the solvent medium.
The solvent is the liquid or fluid medium.
Such solutions are homogeneous because the solute particles are distributed evenly or uniformly in the solvent.
The solute is usually present in smaller amount compared to the solvent.
Answer:
Its pressure will be 0.54 atm at 100 K.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
Gay-Lussac's law can be expressed mathematically as the quotient between pressure and temperature equal to a constant:

Studying two different states, an initial state 1 and a final state 2, it is satisfied:

In this case:
- P1= 1.75 atm
- T1= 50 °C= 323 K (being 0 C=273 K)
- P2= ?
- T2= 100 K
Replacing:

Solving:

P2= 0.54 atm
<u><em>Its pressure will be 0.54 atm at 100 K.</em></u>
Answer:
Seafloor spreading and other tectonic activity processes are the result of mantle convection. ... Seafloor spreading occurs at divergent plate boundaries. As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense.