Answer:
Refer to your periodic table. Lewis dot structures are based off the number of valence electrons an atom has.
Looking at the compounds, we can see that Gallium has three valence electrons in its outer shell and oxygen has six. Oxygen and Gallium are going to share electrons with one another, making a V shape in their diagram.
One Oxygen would make a double bond with a Gallium, leaving one valence electron to another oxygen. That oxygen takes that Final electron. It now has 7 in its outer shell. The remaining Gallium and Oxygen do the same double bond as the one before, leaving the 7 valence electron oxygen with one more electron.
Answer:
Element symbol: Kr.
Mass number: 77.
Charge : 0.
Explanation:
Hello,
In this case, since such substance has the same amount of protons and electrons we can infer it is an atom whose number of neutrons is defined by considering its atomic mass or mass number and atomic number which is actually equal to the number of protons and electrons (36):

In such a way, solving for the atomic mass we obtain:

It means that the element is krypton (Kr) as it has 36 electrons and protons so its charge is 0.
Best regards.
Answer:
The traditional electrolyte for aluminium electrolysis is based on molten cryolite (Na3AlF6), acting as solvent for the raw material, alumina (Al2O3).Metals are found in ores combined with other elements. Electrolysis can be used to extract a more reactive metal from the ore.
Aluminum can and is used as both anodes and cathodes in electrochemical cells, but there are some peculiarities to using it as an anode in aqueous solutions. As you note, aluminum forms a passivating oxide layer quite readily, even by exposure to atmosphere. In an aqueous solution, if the potential is high enough, OH− and O2− are generated at the anode, which can then react with the aluminum to produce aluminum oxide. Al^3+ can also be generated directly. The electric field will draw the anions through the growing aluminum oxide layer towards the aluminum surface and the Al^3+ towards the solution, making the oxide layer grow both away from the electrode surface and into the surface of the electrode. In this way, coatings thicker than the normal passivation in air can be produced. However, aluminum oxide is a good electrical insulator, thus if a dense non-porous layer is grown, it will become impossible to pass current through it and growth will stop, leaving a relatively thin oxide layer (this is how the dielectric layers in electrolytic capacitors are made). This is the normal behaviour in aqueous solutions at near-neutral pH (5–7).
However, if a thick aluminum oxide layer is desired (e.g. to produce coatings on aluminum parts for dying or durability), maintaining porosity is necessary to avoid completely blocking access to the surface. One technique that is commonly used is using a low pH solution, which tends to redissolve some of the oxide and neutralize some of the formed OH−, leaving pores in the oxide layer through which the ions can travel and continue to react. These pores also give a good structure to retain dyes or lubricants, but generally need to be sealed after to protect against corrosion.
Answer:
B. oxygen and glucose
Explanation:
Oxygen for respiration and glucose for energy utilization