<h3>Answer:</h3>
162.43 g of FeCl₂
<h3>
Explanation:</h3>
Step 1: Calculate mass of Fe;
As,
Density = Mass ÷ Volume
Or,
Mass = Density × Volume
Where Volume is the volume of water displaced = 10.4 mL
Putting values,
Mass = 7.86 g.mL⁻¹ × 10.4 mL
Mass = 81.744 g of Fe
Step 2: Calculate amount of FeCl₂;
The balance chemical equation is as follow,
Fe + 2 HCl → FeCl₂ + H₂ ↑
According to this equation,
55.85 g (1 mol) Fe produced = 110.98 g (1 mol) of FeCl₂
So,
81.744 g Fe will produce = X g of FeCl₂
Solving for X,
X = (81.744 g × 110.98 g) ÷ 55.85 g
X = 162.43 g of FeCl₂
Answer:
0.006 48 km/s
Explanation:
1. Convert miles to kilometres
14.5 mi × (1.609 km/1 mi) = 23.33 km
2. Convert hours to seconds
1 h × (60 min/1h) × (60 s/1 min) = 3600 s
3. Divide the distance by the time
14.5 mi/1 h = 23.3 km/3600 s = 0.006 48 km/s
Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.

In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
![[H^{+}]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D)
=

= 0.001

The change in Concentration Δ
![[CH_{3}COOH]](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D)
= 0.001

CH3COOH H+ CH3COOH
Initial

0 0
Change

-0.001 +0.001 +0.001
Equilibrium

- 0.001 0.001 0.001
Since the

value is so small, the assumption
![[CH_{3}COOH]_{initial} = [CH_{3}COOH]_{equilibrium}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D_%7Binitial%7D%20%3D%20%5BCH_%7B3%7DCOOH%5D_%7Bequilibrium%7D)
can be made.
![k_{a} = [tex]= 1.8*10^{-5} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{0.001^{2}}{x}](https://tex.z-dn.net/?f=%20k_%7Ba%7D%20%3D%20%5Btex%5D%3D%201.8%2A10%5E%7B-5%7D%20%20%3D%20%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D%20%3D%20%20%5Cfrac%7B0.001%5E%7B2%7D%7D%7Bx%7D%20)
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!
Because more than one substance was released (following a color change signifying a chemical reaction), the sample was indeed, a compound.
Hi, P.S. The atomic number will always be the same as the number of protons...