Answer:
44.65 inches
Step-by-step explanation:
Height of ramp = 16 inches
Length of ramp, l
Angle formed by ramp and ground = 21°
Using Pythagoras :
Sinθ = opposite / hypotenus
Sin21° = 16 / l
0.3583679 = 16 / l
0.3583679 * l = 16
l = 16 / 0.3583679
l = 44.646855 inches
Hence, length of ramp is 44.65 inches
Answer:
-334
Step-by-step explanation:
tyes sfdfa d
Answer:
−15000
Step-by-step explanation:
Solution:
15×(-25) = -375
(-4)×(-10)= -40
-375×-40= -15000
The answer is -60=60
Simplifying
s2 + -17s + -60 = (s + -5)(s + -12)
Reorder the terms:
-60 + -17s + s2 = (s + -5)(s + -12)
Reorder the terms:
-60 + -17s + s2 = (-5 + s)(s + -12)
Reorder the terms:
-60 + -17s + s2 = (-5 + s)(-12 + s)
Multiply (-5 + s) * (-12 + s)
-60 + -17s + s2 = (-5(-12 + s) + s(-12 + s))
-60 + -17s + s2 = ((-12 * -5 + s * -5) + s(-12 + s))
-60 + -17s + s2 = ((60 + -5s) + s(-12 + s))
-60 + -17s + s2 = (60 + -5s + (-12 * s + s * s))
-60 + -17s + s2 = (60 + -5s + (-12s + s2))
Combine like terms: -5s + -12s = -17s
-60 + -17s + s2 = (60 + -17s + s2)
Add '17s' to each side of the equation.
-60 + -17s + 17s + s2 = 60 + -17s + 17s + s2
Combine like terms: -17s + 17s = 0
-60 + 0 + s2 = 60 + -17s + 17s + s2
-60 + s2 = 60 + -17s + 17s + s2
Combine like terms: -17s + 17s = 0
-60 + s2 = 60 + 0 + s2
-60 + s2 = 60 + s2
Add '-1s2' to each side of the equation.
-60 + s2 + -1s2 = 60 + s2 + -1s2
Combine like terms: s2 + -1s2 = 0
-60 + 0 = 60 + s2 + -1s2
-60 = 60 + s2 + -1s2
Combine like terms: s2 + -1s2 = 0
-60 = 60 + 0
-60 = 60
Solving
-60 = 60
Answer:
y = 1
x = -0.75
Step-by-step explanation:
The alternate angles theorem states that if two parallel lines are cut by a transversal, then each pair of alternate interior angles are equal.
21y - 1 = 4x + 23
21y - 24 = 4x
5.25y - 6 = x
21y - 1 = 4x + 23
21y = 4x + 24
y = 4/21(5.25 - 6) + 1.14
y = 1 - 1.14 + 1.14
y = 1
5.25(1) - 6 = x
-0.75 = x