A compound that yields hydrogen ions when dissolved in a solution is an acid.
An example is an <em>aqueous solution of HCl.</em>
The last one, answer is D
The answer would be .5 mols because you take the total amount of grams, which is 20, and you had up the molar mass of sodium hydroxide, which would be 40. After you have this you would set this up as a stochiometry equation. With 1 mol on top you dived 20/40 to cancel out your grams. This leaves you with .5 mols
Explanation:
Let us assume that total mass of the solution is 100 g. And, as it is given that acetic acid solution is 12% by mass which means that mass of acetic acid is 12 g and 88 g is the water.
Now, calculate the number of moles of acetic acid as its molar mass is 60 g/mol.
No. of moles =
= 
= 0.2 mol
Molarity of acetic acid is calculated as follows.
Density = 
1 g/ml = 
volume = 100 ml
Hence, molarity = 
= 
= 2 mol/l
As reaction equation for the given reaction is as follows.

So, moles of NaOH = moles of acetic acid
Let us suppose that moles of NaOH are "x".
(as 1 L = 1000 ml)
x = 20 L
Thus, we can conclude that volume of NaOH required is 20 ml.
I would say the last one because unlike beta and alpha rays they will have no effect on the mass or atomic number because they are just composed of high energy radiation