Answer:
- Sn²⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰
- Ti⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 4f¹⁴ 6s² 5d¹⁰
- As⁺³ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
Explanation:
The <em>electron configuration</em> indicates the way the electrons of an atom or ion are structured.<u> In the case of cations</u>, by knowing the electronic configuration of the atom (which is neutral), we can find out the cations' configuration by substracting <em>n</em> outermost electrons, where <em>n</em> is the charge of the cation.
Mg⁰ ⇒ [Ne] 3s² = 1s² 2s² 2p⁶ 3s². Thus
Mg⁺² ⇒ [Ne] = 1s² 2s² 2p⁶.
In a similar fashion, the answers are:
Sn²⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰
K⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶
Al³⁺ ⇒ 1s² 2s² 2p⁶
Ti⁺ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 4f¹⁴ 6s² 5d¹⁰
As⁺³ ⇒ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²
Answer:
C
Explanation:
because it remains the same
Answer:
the hot fire is depositing heat directly on to the marshmello, heating/cooking it. the hot marshmello then is placed onto chocolate, melting it but idk if that part matters.
Answer:
V₂ = 16.5 L
Explanation:
To solve this problem we use <em>Avogadro's law, </em>which applies when temperature and pressure remain constant:
V₁/n₁ = V₂/n₂
In this case, V₁ is 22.0 L, n₁ is [mol CO + mol NO], V₂ is our unknown, and n₂ is [mol CO₂ + mol N₂].
- n₁ = mol CO + mol NO = 0.1900 + 0.1900 = 0.3800 mol
<em>We use the reaction to calculate n₂</em>:
2CO(g) + 2NO(g) → 2CO₂(g) + N₂(g)
0.1900 mol CO *
0.1900 mol CO₂
0.1900 mol NO *
0.095 mol N₂
- n₂ = mol CO₂ + mol N₂ = 0.1900 + 0.095 = 0.2850 mol
Calculating V₂:
22.0 L / 0.3800 mol = V₂ / 0.2850 mol
V₂ = 16.5 L
Answer:
H-O-H polar
O-C-O nonpolar
H-C-N polar
Explanation:
Looking up the electronegativities of the atoms involved in this question, we have:
Atom Electronegativity
H 2.2
C 2.55
N 3.04
O 3.44
All of the atoms differ in electronegativity resulting in individual dipole moments in H-O, O-C, H-C and C-N bonds. To find if the molecules will be polar we need to consider the structure of the compound to see if there is a resultant dipole moment.
In H-O-H, we have 2 lone pairs of electrons around the central oxygen atom which push the angle H-O-H of the ideal tetrahedral structure to be smaller than 109.5 º resulting in an overall dipole moment making it polar.
In O-C-O, we have two dipole moments that exactly cancel each other in the linear molecule since the central carbon atom does not have lone pairs of electrons since it has 2 double bonds. Therefore the molecule is nonpolar.
In H-C-N, again we have have a central carbon atom without lone pairs of electrons and the shape of the molecule is linear. But, now we have that the dipole moment in C-N is stronger than the H-C dipole because of the difference in electronegativity of nitrogen compared to hydrogen. The molecule has an overall dipole moment and it is polar.