Answer:
(x + 1 +
)(x + 1 -
)
Step-by-step explanation:
There are no integer values with product - 6 and sum + 2
Calculate the zeros then obtain the factors , that is
if x = a is a zero then (x - a) is a factor
Given
x² + 2x - 6 ( equate to zero )
x² + 2x - 6 = 0 ( add 6 to both sides )
x² + 2x = 6
To complete the square
add ( half the coefficient of the x- term)² to both sides
x² + 2(1)x + 1 = 6 + 1
(x + 1)² = 7 ( take the square root of both sides )
x + 1 = ±
( subtract 1 from both sides )
x = - 1 ± 
zeros are x = - 1 -
and x = - 1 + 
Then factors are
(x - (- 1 -
) ) , (x - (- 1 +
) ), that is
(x + 1 +
) and (x + 1 -
)
Thus
x² + 2x - 6 = (x + 1 +
)(x + 1 -
) ← in factored form