Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Early hypotheses were not based on observations.
Early hypotheses were not tested by experimentation.
Early hypotheses were formed from scientific questions.
Early hypotheses were influenced by creative thinking
Answer:
D
Explanation:
From the information given:
The angular speed for the block 
Disk radius (r) = 0.2 m
The block Initial velocity is:

Change in the block's angular speed is:

However, on the disk, moment of inertIa is:

The time t = 10s
∴
Frictional torques by the wall on the disk is:

Finally, the frictional force is calculated as:


Answer:
a) 
b) the motorcycle travels 155 m
Explanation:
Let
, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

where:
is the speed of the motorcycle at time 2
is the velocity of the car (constant)
is the velocity of the car and the motorcycle at time 1
d is the distance between the car and the motorcycle at time 1
x is the distance traveled by the car between time 1 and time 2
Solving the system of equations:
![\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dcar%26motorcycle%5C%5Cx%3Dv_0%5CDelta%7Bt%7D%26x%2Bd%3D%28%5Cfrac%7Bv_0%2Bv_%7Bm2%7D%7D%7B2%7D%7D%29%20%5CDelta%7Bt%7D%5Cend%7Barray%7D%5Cright%5D)

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:
