We use the formula, to calculate the volume of water displaced by concrete canoe,

Here, W is the weight of concrete canoe and
is the specific weight of water and its value is
.
So,
.
Now the volume of water occupied in ultra lightweight kevlar canoe,

Here, w is weight of kevlar canoe.
So,

Thus, the volume of water displaced,
.
Hence, the volume of water displaced canoe compared to an ultra-lightweight kevlar canoe is 
Answer:
The rise in height of combined block/bullet from its original position is 0.45m
Explanation:
Given;
mass of bullet, m₁ = 12 g = 0.012 kg
mass of block of wood, m₂ = 1 kg
initial speed of bullet, u₁ = 250 m/s.
initial speed of block of wood, u₂ = 0
From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.
m₁u₁ + m₂u₂ = v(m₁+m₂)
where;
v is the final speed of the combined block/bullet system.
0.012 x 250 + 0 = v (0.012 + 1)
3 = v (1.012)
v = 3/1.012
v = 2.96 m/s
From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.
¹/₂mv² = mgh
¹/₂v² = gh
¹/₂ (2.96)² = (9.8)h
4.3808 = 9.8h
h = 4.3808/9.8
h = 0.45 m
Therefore, the rise in height of combined block/bullet from its original position is 0.45m
Yes
Explanation:
It is a reasonable result obtained.
Error = true value - measured value
true value = 24.5
measured value = 24.2
Error = 24.5 - 24.2 = 0.3g
The error reported in the reading is 0.3g
The reason why we had a disparity in the figures obtained from this measurement is primarily due to some erroneous scale.
The mixture at the end of the day is a solution.
We are expected to have the same mass but due to experimental or some form of random error introduced, we noticed a difference.
The value obtained is quite logical as we only had a deviation of 0.3g.
learn more:
Error brainly.com/question/2764830
#learnwithBrainly
If<span> The </span>Sun<span> Went Out, How Long </span>Could<span> Life On </span>Earth<span> Survive? ... (which is actually physically impossible), the </span>Earth would stay<span> warm—at least ... from the planet's core </span>would<span> equal the</span>heat<span> that the </span>Earth<span> radiates into space, ... Photosynthesis </span>would<span> halt immediately, and </span>most<span> plants</span>would<span> die </span>in<span> a few </span>weeks<span>.</span>