Answer:
C
Explanation:
If the theory were to be proved you you need to repeat the experiment over and over again so that way you can prove that it is true wuth the same results.
Answer:
The Kinetic Energy decreases. The Total Energy stays the same
Explanation:
The TE stays the same, so if PE increases then KE will decrease.
Speed differs from velocity in the same way that distance differs from displacement.
Answer:
a)<em> 2000 W/m² </em><em>; </em>b) 636.94 W/m<em>².sr ; </em><em>c) </em>0.5
Explanation:
a)
The formula for calculation of total emissive power is:
Total emissive power = E =
E'<em>λdλ</em>
<em> </em>=
(0)d<em>λ + </em>
(100)d<em>λ + </em>
(200)d<em>λ + </em>
(100)d<em>λ </em>
(0)d<em>λ</em>
<em>where a = 5; b = 10; c = 15; d = 20; e = 25</em>
<em> = 0 +100(10-5) + 200(15-10) +100(20-15) + 0</em>
<em> = 2000 W/m²</em>
b)
The formula for total intensity of radiation is:
I
= E/π = 200/3.14 = 636.94 W/m<em>².sr </em>
<em>c)</em>
Fo submissive power leaving the surface in range π/4 ≤θ≤π/2
[E(π/4 ≤θ≤π/2)]/E = 

Icosθsinθ dθdΦdλ
where f = infinity, g=2π, h=π/4, i=π/2
By simplifying, we get
= (-1/2)[cos(2π/2)-cos(2π/2)]
= -0.5(-1-0)
=0.5
Electric field lines always begin at positive charges (or at infinity) and end at negative charges (or at infinity).
One could also say that the lines we use to represent an electric field indicate the direction in which a positive test charge would initially move when released from rest.