Hello!
To solve this problem we're going to use the
Charles' Law. This Law describes the relationship between
Volume and Temperature in an ideal gas. Applying this law we have the following equation:

So, the final temperature is
54,23 °CHave a nice day!
Answer:
= -457.9 kJ and reaction is product favored.
Explanation:
The given reaction is associated with 2 moles of 
Standard free energy change of the reaction (
) is given as:
, where T represents temperature in kelvin scale
So, 
So, for the reaction of 1.57 moles of
, 
As,
is negative therefore reaction is product favored under standard condition.
A) the average global temp. Would decrease
Answer:
Sugar, sodium chloride, and hydrophilic proteins are all substances that dissolve in water. Oils, fats, and certain organic solvents do not dissolve in water because they are hydrophobic.
And, water is called the "universal solvent" because it dissolves more substances than any other liquid. ... Water molecules have a polar arrangement of the oxygen and hydrogen atoms—one side (hydrogen) has a positive electrical charge and the other side (oxygen) had a negative charge.
I don't see any options so there i hope it helps .
Answer:
p-fluoronitrobenzene and sodium phenoxide is more appropriate
Explanation:
An ipso substitution is required to form p-nitrophenyl phenyl ether.
For this ipso substitution, an alkoxide anion needs to attack as a nucleophile at the carbon atom attached to fluorine atom and thereby substitute that F atom.
p-nitrophenoxide is an weak nucleophile as compared to phenoxide due to presence of electron withdrawing resonating effect of nitro group at para position.
p-fluoronitrobenzene is a good choice for nucleophilic attack by alkoxide anion as compared to fluorobenzene due to higher positive charge density at carbon atom directly attached to F atom. Higher positive charge density arises due to presence of electron withdrawing resonating effect og nitro group at para position.
So, p-fluoronitrobenzene and sodium phenoxide is more appropriate