Answer :
The Nernst equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Anode]}{[Cathode]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BAnode%5D%7D%7B%5BCathode%5D%7D)
where,
= standard cell potential
n = number of electrons in oxidation-reduction reaction
F = Faraday constant = 96500 C
R= gas constant = 8.314 J/Kmol
T = temperature
[Anode] = anodic ion concentration
[Cathode] = cathodic ion concentration
Answer:
the properties of three undiscovered elements is the correct answer.
Explanation:
After he completed his work Mendeleev predicted the properties of the undiscovered elements.
In the year 1871, Dmitri Mendeleev predicted the detailed existence and the properties of the three elements that are undiscovered and he gained tremendous fame.
He left the gap in the table to put the elements which are not identified at that time and by glancing at the physical and chemical properties of an element next to the gap, Mendeleev could predict the properties of the not discovered elements.
Answer:
The amount of drug left in his body at 7:00 pm is 315.7 mg.
Explanation:
First, we need to find the amount of drug in the body at 90 min by using the exponential decay equation:

Where:
λ: is the decay constant = 
: is the half-life of the drug = 3.5 h
N(t): is the quantity of the drug at time t
N₀: is the initial quantity
After 90 min and before he takes the other 200 mg pill, we have:

Now, at 7:00 pm we have:

Therefore, the amount of drug left in his body at 7:00 pm is 315.7 mg (from an initial amount of 400 mg).
I hope it helps you!