The wires is what is needed to put together the whole thing, kinda like glue when you're gluing a piece of paper on it.
Anyways, the battery is the main source and main energy per say.
That energy that comes from the battery, thanks to the wires, it can transfer that said energy to both the switch and light bulb.
And as you flick the switch, it depends of how you put it together, there's two options, turning the light bulb on or turning it off.
Though it doesn't mean that since the light bulb is connected to the battery makes the bulb turn on no matter what since the switch can cancel the main source's energy.
- Ouma :>
It Increases. I just took a quiz with the same question.
Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass as
Substituting (2) into (1), we get
where , the frictional force on Set this aside for now and let's look at the forces on
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on as
From (5), we can solve for <em>N</em> as
Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by
Substituting (7) into (4) we get
Collecting similar terms together, we get
or
Putting in the numbers, we find that . To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get . To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get