The applicable relationship is N1/N2 = V1/V2, meaning the ratio of primary voltage to secondary voltage is equal to the ratio of primary turns to secondary turns.
Here N1 = 1000, V1 = 250, V2 = 400V and N2 = TBD.
Rewriting the above relationship, N2 = N1 V2/V1 = 1000 x 400/250 = 1600 turns.
The image produced is magnified and real.
Explanation:
It is given that,
Focal length of the concave mirror, f = -13.5 cm
Image distance, v = -37.5 cm (in front of mirror)
Let u is the object distance. It can be calculated using the mirror's formula as :



u = -21.09 cm
The magnification of the mirror is given by :


m = -1.77
So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.
Answer:
i have no clue i just need brailnly points
Explanation: