Answer:
cause the oil is on fire nit the water oil is less dense than water so it floats on top of it
Explanation:
I hope I helped you
Answer:
321.6 g/Mol
Explanation:
mass of solvent in kilograms = 90g/1000 = 0.09 Kg
Given that;
ΔTf = Kf . m . i
Where;
Kf = freezing point constant = 4.25 °C/Kg mol
m = molality of the solution
i = Van't Hoff factor = 1 (since the substance is molecular)
ΔTf = freezing point of pure solvent - freezing point of solution
freezing point of pure solvent = 3 °C
ΔTf = 3 °C - 2.1 °C
ΔTf = 0.9 °C
0.9= 4.25 * 6.13/M/0.09 * 1
0.9= 26.0525/M * 1/0.09
0.9 = 26.0525/0.09 M
0.9 * 0.09M = 26.0525
M = 26.0525/0.9 * 0.09
M= 321.6 g/Mol
Answer:
quantity of heat=mc*theta
=25*0.930(76-25)
=25*0.930*51
=1185.75J
=11.9kJ
Answer: The final concentration of aluminum cation is 0.335 M.
Explanation:
Given:
= 47.8 mL (1 mL = 0.001 L) = 0.0478 L
= 0.321 M,
= 21.8 mL = 0.0218 L,
= 0.366 M
As concentration of a substance is the moles of solute divided by volume of solution.
Hence, concentration of aluminum cation is calculated as follows.
![[Al^{3+}] = \frac{M_{1}V_{1} + M_{2}V_{2}}{V_{1} + V_{2}}](https://tex.z-dn.net/?f=%5BAl%5E%7B3%2B%7D%5D%20%3D%20%5Cfrac%7BM_%7B1%7DV_%7B1%7D%20%2B%20M_%7B2%7DV_%7B2%7D%7D%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D)
Substitute the values into above formula as follows.
![[Al^{3+}] = \frac{M_{1}V_{1} + M_{2}V_{2}}{V_{1} + V_{2}}\\= \frac{0.321 M \times 0.0478 L + 0.366 M \times 0.0218 L}{0.0478 L + 0.0218 L}\\= \frac{0.0153438 + 0.0079788}{0.0696}\\= 0.335 M](https://tex.z-dn.net/?f=%5BAl%5E%7B3%2B%7D%5D%20%3D%20%5Cfrac%7BM_%7B1%7DV_%7B1%7D%20%2B%20M_%7B2%7DV_%7B2%7D%7D%7BV_%7B1%7D%20%2B%20V_%7B2%7D%7D%5C%5C%3D%20%5Cfrac%7B0.321%20M%20%5Ctimes%200.0478%20L%20%2B%200.366%20M%20%5Ctimes%200.0218%20L%7D%7B0.0478%20L%20%2B%200.0218%20L%7D%5C%5C%3D%20%5Cfrac%7B0.0153438%20%2B%200.0079788%7D%7B0.0696%7D%5C%5C%3D%200.335%20M)
Thus, we can conclude that the final concentration of aluminum cation is 0.335 M.
Answer:
0.9 liters of 4.0 M NaOH solution will react with 1.8 moles of sulfuric acid.
Explanation:

According to reaction, 1 mole of sulfuric acid reacts with 2 moles of sodium hydroxide.
Then 1.8 moles of sulfuric acid will react with:
moles of NaOH.
Molarity of NaOH = 4.0 M
Moles of NaOH= n = 3.6 mol
Volume of NaOH = V


0.9 liters of 4.0 M NaOH solution will react with 1.8 moles of sulfuric acid.