Answer:
The precipitate will form.
Explanation:
Let's write the equilibrium expression for the solubility product of calcium sulfate:
⇄ 
The solubility product is defined as the product of the free ions raised to the power of their coefficients, in this case:
![K_{sp}=[Ca^{2+}][SO_4^{2-}]=10^{-4.5}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BSO_4%5E%7B2-%7D%5D%3D10%5E%7B-4.5%7D)
Our idea is to find the solubility quotient, Q, and compare it to the K value. A precipitate will only form if Q > K. If Q < K, the precipitate won't form. In this case:
![Q_{sp}=[Ca^{2+}][SO_4^{2-}]=5.00\cdot10^{-2} M\cdot7.00\cdot10^{-3} M=3.5\cdot10^{-4}](https://tex.z-dn.net/?f=Q_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BSO_4%5E%7B2-%7D%5D%3D5.00%5Ccdot10%5E%7B-2%7D%20M%5Ccdot7.00%5Ccdot10%5E%7B-3%7D%20M%3D3.5%5Ccdot10%5E%7B-4%7D)
Now given the K value of:

Notice that:

This means the precipitate will form, as we have an excess of free ions and the equilibrium will shift towards the formation of a precipitate to decrease the amount of free ions.
<h2>Answer:</h2>
The compound is known as the neurotransmitter or messenger chemicals.
<h3>Explanation:</h3>
- Neurotransmitters are the chemicals a type of messenger which is used to transmit information from one cell to the next cell.
- Some hormones are also known as messenger chemicals.
- The nerve cells are not linked to each other while they are separated from each other by a space known as synapses.
- The electric potential signal is converted into chemical signal by the release of neurotransmitters.
- These neurotransmitter signal next cell to produce equal amount of electric signal in nerve cell.
9.01 × 10⁻²⁶ J
<h3>Explanation</h3>
ΔE = h · f
Where
- ΔE the change in energy,
- h the planck's constant, and
- f frequency of the emission.
However, only λ is given.
f = c / λ
Where
- f frequency of the emission,
- λ wavelength of the emission, and
- c the speed of light.
For this emission:
f = 2.998 × 10⁸ / 2.21 = 1.36 × 10⁸ s⁻¹.
ΔE = h · f = 6.626 × 10⁻³⁴ × 1.36 × 10⁸ = 9.01 × 10⁻²⁶ J
1. exercise because you are using exercise to affect the amount of concentration. 2. concentration because concentration is what is being measured