If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. We can calculate the concentration of CO₂ using Henry's law.

We can calculate the mass of CO₂ in 1.1 L considering its molar mass is 44.01 g/mol.

Now, we will repeat the same procedure for a partial pressure of 1.28 atm.


The mass of CO₂ released will be equal to the difference in the masses at the different pressures.

If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
Learn more: brainly.com/question/18987224
<em>The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. How much CO₂ gas (in g) will be released from 1.1 L of the carbonated water when the partial pressure of CO2 is lowered to 1.28 atm? At 25 ºC, the Henry’s law constant for CO₂ dissolved in water is 1.65 x 10⁻³ M/atm, and the density of water is 1.0 g/cm³.</em>
Answer: Option (d) is the correct answer.
Explanation:
Steps involved for the given reaction will be as follows.
Step 1:
(fast)
Rate expression for step 1 is as follows.
Rate = k ![[NO]^{2}](https://tex.z-dn.net/?f=%5BNO%5D%5E%7B2%7D)
Step 2: 
This step 2 is a slow step. Hence, it is a rate determining step.
Step 3.
(fast)
Here,
is intermediate in nature.
All the steps are bimolecular and it is a second order reaction. Also, there is no catalyst present in this reaction.
Thus, we can conclude that the statement step 1 is the rate determining step, concerning this mechanism is not directly supported by the information provided.
Answer:
Cyclopropane has a planar carbon back bone while propane does not
Explanation:
We have to recognize that in straight chain saturated organic compounds, carbon atoms have a tetrahedral geometry. Each carbon atom is bonded to four other atoms.
However, carbon atoms in cyclic compounds are also sp3 hybridized with each carbon bonded to only four other atoms but the ring system is highly strained.
Cyclopropane is a necessarily planar molecule with a bond angle that is far less than the expected tetrahedral bond angle due to strain in the molecule. Hence, the carbon atoms may have have a "planar backbone".
117.22 g are needed to react with an excess of Fe2O3 to produce 156.2 g of Fe.
Explanation:
Moles of Fe = Mass of Fe in grams / Atomic weight of Fe
= 156.2 / 55.847
Moles of Fe = 2.79.
The ratio between CO and Fe id 3 : 2.
Moles CO needed = 2.79 * (3 / 2)
= 4.185.
To calculate Atomic weight of CO,
Atomic weight of carbon = 12.011
Atomic weight of oxygen= 15.9994
Atomic weight of CO = 12.011 + 15.9994 = 28.01 g / mol.
Mass of CO = 4.185 * 28.01 = 117.22 g.