Answer:
Bond energy of carbon-fluorine bond is 485 kJ/mol
Explanation:
Enthalpy change for a reaction, is given as:
![\Delta H_{rxn}=\sum [n_{i}\times (E_{bond})_{i}]-\sum [n_{j}\times (E_{bond})_{j}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%28E_%7Bbond%7D%29_%7Bj%7D%5D)
Where
and
represents average bond energy in breaking "i" th bond and forming "j" th bond respectively.
and
are number of moles of bond break and form respectively.
In this reaction, one mol of C=C, four moles of C-H and one mol of F-F bonds are broken. One mol of C-C bond, four moles of C-H bonds and two moles of C-F bonds are formed
So, 
or, 
or, 
So bond energy of carbon-fluorine bond is 485 kJ/mol
Answer:
i only know 6 whitch is the +ion
Explanation:
Answer:
a. 211.7
Explanation:
Iron Pyrite reacts with Oxygen to produce Iron (II) Oxide and Sulphur (IV) Oxide.
The equation is as follows:
4FeS₂₍s₎ + 11O₂₍g₎ → 2Fe₂O₃₍s₎ + 8SO₂₍g₎
From the equation, 4 moles of FeS₂ produce 8 moles of SO₂.
Therefore the reaction ratio is 4:8 or 1:2
198.20 grams of FeS₂ into moles is calculated as follows:
Moles= Mass/RMM
RMM of FeS₂ is 119.9750g/mol.
Number of moles = 198.20/119.9750g/mol
=1.652 moles of FeS₂
The reaction ratio of FeS₂ to SO₂ produced is 1:2
Thus SO₂ produced = 1.652 moles×2/1=3.304 moles
The mass of SO₂ produced =Moles ×RMM
=3.304 moles ×64.0638 g/mol
=211.667 grams
=211.7g