1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dvinal [7]
3 years ago
10

A block of wood 3.0 cm on each side has a mass of 27g. what is the density of this block?

Physics
1 answer:
schepotkina [342]3 years ago
8 0
The block of wood is 3cm on each side so it is a cube. The volume of a cube is given by s^3. So the volume of this block is 3cm x 3cm x3 cm = 27 cm^3. density = mass/volume =27 g / 27 cm^3 = 1 g/cm^3
You might be interested in
What best describes the speed of light waves in solids, liquids, and gases?
hammer [34]

Answer:

C

Explanation:

Generally, the speed of light slows down when passing through a medium that is not a vacuum. This is not always the case, but I will be ignoring the rare/exotic exceptions. Light has a harder time traveling through solids and liquids than it does with gases.

3 0
2 years ago
Using equations, determine the temperature, pressure and density of the air for a aircraft flying at 19.5 km. Is this aircraft s
Viefleur [7K]

Answer:

a) - 72.5°c

b) pressure = 3625.13 Pa

c) density =  0.063 kg/m^3

d) it is a subsonic aircraft

Explanation:

a) Determine Temperature

Temperature at 19.5 km ( 19500 m )

T = -131 + ( 0.003 * altitude in meters )

  =  -131 + ( 0.003 * 19500 ) = - 72.5°c

b) Determine pressure and density at 19.5 km altitude

Given :

Po (atmospheric pressure at sea level )  = 101kpa

R ( gas constant of air ) = 0.287 KJ/Kgk

T = -72.5°c ≈ 200.5 k

pressure = 3625.13 Pa

hence density = 0.063 kg/m^3

attached below is the remaining part of the solution

C) determine if the aircraft is subsonic or super sonic

Velocity ( v ) = \sqrt{CRT}  =  \sqrt{1.4*287*200.5 } = 283.8 m/s

hence it is a subsonic aircraft

4 0
3 years ago
Calculate the wavelength of each frequency of electromagnetic radiation: a. 100.2 MHz (typical frequency for FM radio broadcasti
Natalka [10]

Answer:

a). 100.2 MHz (typical frequency for FM radio broadcasting)

The wavelength of a frequency of 100.2 Mhz is 2.99m.

b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)

The wavelength of a frequency of 1070 khz is 280.3 m.

c. 835.6 MHz (common frequency used for cell phone communication)

The wavelength of a frequency of 835.6 Mhz is 0.35m.

Explanation:

The wavelength can be determined by the following equation:

c = \lambda \cdot \nu  (1)

Where c is the speed of light, \lambda is the wavelength and \nu is the frequency.  

Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave.

<em>a). 100.2 MHz (typical frequency for FM radio broadcasting)</em>

Then, \lambda can be isolated from equation 1:

\lambda = \frac{c}{\nu} (2)

since the value of c is 3x10^{8}m/s. It is necessary to express the frequency in units of hertz.

\nu = 100.2 MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 100200000Hz

But 1Hz = s^{-1}

\nu = 100200000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{100200000s^{-1}}

\lambda = 2.99 m

Hence, the wavelength of a frequency of 100.2 Mhz is 2.99m.

<em>b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)</em>

<em> </em>

\nu = 1070kHz . \frac{1000Hz}{1kHz} ⇒ 1070000Hz

But  1Hz = s^{-1}

\nu = 1070000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{1070000s^{-1}}

\lambda = 280.3 m

Hence, the wavelength of a frequency of 1070 khz is 280.3 m.

<em>c. 835.6 MHz (common frequency used for cell phone communication) </em>

\nu = 835.6MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 835600000Hz

But  1Hz = s^{-1}

\nu = 835600000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{835600000s^{-1}}

\lambda = 0.35 m

Hence, the wavelength of a frequency of 835.6 Mhz is 0.35m.

6 0
3 years ago
If a force of 19 N is applied to a crate to push it 23 m, how much work is done on the crate by the force?
swat32

Answer:

437 Joules

Explanation:

Use the formula for work directly

(work) = (force) x (displacement)

to get

(work) = (19 N) x (23 m) = 437 Joules

4 0
3 years ago
A good train took 7 hours to complete its journey. For the first 3 hours, it travelled an average speed of 186km/h. What was the
Sliva [168]
I really hope this helps

4 0
3 years ago
Other questions:
  • Which of these is the best exclamation for why to negatively charged balloons, if put close, will repel?
    14·1 answer
  • Explain the difference between a conductor and an insulator. Give two examples of each.
    6·1 answer
  • An egg is dropped from the top of the band hall. if the band hall is 25 m tall, determine the time it takes the egg to hit the f
    9·1 answer
  • An ice hockey puck slides along the ice at 12 m/s.?
    7·1 answer
  • 3. All of the following are parts of a longitudinal wave EXCEPT
    6·2 answers
  • An energy transformation occurs and results in increased disorder.
    7·1 answer
  • Based on the chemical equation, use the drop-down menu to choose the coefficients that will balance the chemical
    11·1 answer
  • Calculate Neptune's mass given the acceleration due to gravity at the north pole is 11.529 m/s2 and the radius of Neptune at the
    5·1 answer
  • Brainliest for correct answer! :)
    14·1 answer
  • Explain the basic reason of conduction of an electric current through a conductor.​
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!