Answer:
The maximum height that a cannonball fired at 420 m/s at a 53.0° angles is 5740.48m.
hmax = 5740.48 m
Explanation:
This is an example of parabolic launch. A cannonball is fired on flat ground at 420 m/s at a 53.0° angle and we have to calculate the maximum height that it reach.
V₀ = 420m/s and θ₀ = 53.0°
So, when the cannonball is fired it has horizontal and vertical components:
V₀ₓ = V₀ cos θ₀ = (420m/s)(cos 53°) = 252.76 m/s
V₀y = V₀ cos θ₀ = (420m/s)(cos 53°) = 335.43m/s
When the cannoball reach the maximum height the vertical velocity component is zero, that happens in a tₐ time:
Vy = V₀y - g tₐ = 0
tₐ = V₀y/g
tₐ = (335.43m/s)/(9.8m/s²) = 34.23s
Then, the maximum height is reached in the instant tₐ = 34.23s:
h = V₀y tₐ - 1/2g tₐ²
hmax = (335.43m/s)(34.23s)-1/2(9.8m/s²)(34.23s)²
hmax = 11481.77m - 5741.29m
hmax = 5740.48m
b the money supply divided by nominal GDP
Explanation:
The velocity of money is nothing but the ratio of GDP and money supply. In other words, velocity of money also tells us the rate at which money is being exchanged in a country. The constant velocity says that the growth rate in the economy is zero. Velocity of money depends on the rate at which money is spent for finished goods and services per unit time. It is more when spending of money is more and it decreases when people spend less money. The total amount of money that is in circulation or that exists in a country is know as money supply.
Divide 360000 by 200 to get 1800 seconds, or half of hour.
Answer:
Acceleration
Explanation:
For example, if the acceleration is zero, then the velocity-time graph is a horizontal line (i.e., the slope is zero). If the acceleration is positive, then the line is an upward sloping line (i.e., the slope is positive).