Answer:
The 90% confidence interval for the mean time required by all college graduates is between 5.36 years and 5.44 years.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:
Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
Now, find the margin of error M as such
In which
is the standard deviation of the population and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 5.4 - 0.04 = 5.36 years.
The upper end of the interval is the sample mean added to M. So it is 5.4 + 0.04 = 5.44 years.
The 90% confidence interval for the mean time required by all college graduates is between 5.36 years and 5.44 years.
4 cos² x - 3 = 0
4 cos² x = 3
cos² x = 3/4
cos x = ±(√3)/2
Fixing the squared cosine doesn't discriminate among quadrants. There's one in every quadrant
cos x = ± cos(π/6)
Let's do plus first. In general, cos x = cos a has solutions x = ±a + 2πk integer k
cos x = cos(π/6)
x = ±π/6 + 2πk
Minus next.
cos x = -cos(π/6)
cos x = cos(π - π/6)
cos x = cos(5π/6)
x = ±5π/6 + 2πk
We'll write all our solutions as
x = { -5π/6, -π/6, π/6, 5π/6 } + 2πk integer k
Answer is: C
√11 ≈ 3.3661
Which the closest to your answers is 3.3
Answer: ?
Step-by-step explanation:
Answer: -n-4
Step-by-step explanation:
Distribute the - to n and 4