Energy(heat) required to raise the temperature of water : 418.6 J
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Specific heat of water = 4.186 J/g*C.
∆T(raise the temperature) : 10° C
mass = 10 g
Heat required :

6.4 * 6.02 * 10^23 = 3.8528*10^24 atoms
Don't let the fact that it's vanadium throw you off, avagadros constant stays the same for all elements
C. low boiling points, since convalent bonds are comprise of two non metal elements, the have relatively low boiling points, since most of them are gases.
Answer:
ΔS> 0 means Letter A
Explanation:
Processes that involve an increase in entropy of the system (ΔS > 0) are very often spontaneous; however, examples to the contrary are plentiful. By expanding consideration of entropy changes to include the surroundings, we may reach a significant conclusion regarding the relation between this property and spontaneity. In thermodynamic models, the system and surroundings comprise everything, that is, the universe, and so the following is true:
\displaystyle \Delta {S}_{\text{univ}}=\Delta {S}_{\text{sys}}+\Delta {S}_{\text{surr}}
Answer:
The ideal gas law can be used in stoichiometry problems in which chemical reactions involve gases. Standard temperature and pressure (STP) are a useful set of benchmark conditions to compare other properties of gases. At STP, gases have a volume of 22.4 L per mole.