Answer:
C. Lymphocytes
Explanation:
All of the following choices are kinds of white blood cells that have a significant role in the body's immune system.
A. Monocytes
Monocytes defend the body against infection by acting as macrophages. They are capable of eating up foreign bodies that may cause infection.
B. Neutrophils
Neutrophils are the most in number in the body's immune system, especially when there is inflammation. They are distributed to different areas where they can move through circulation along blood vessels. They specifically attack antigens.
C. Lymphocytes
Lymphocytes are further divided into two. These are the B cells and the T cells. The B cells are also of two kinds. One of them is the memory B cells, which can remember a foreign body and create antibodies against it to provide for a long-term resistance in case the body gets exposed to the same infectious agent again.
D. Basophils
As part of the immune system, basophils function for preventing blood clots as well as in mediating allergic reactions.
Density of maple syrup = 1.325 g/ml
1000 ml contains 1325 g of maple syrup
In 100 g of maple syrup - 67 mg of Ca ions
Therefore in 1325 g of maple syrup - 67 mg /100g * 1325 g
= 887.75 mg of Ca
this means in 1000 ml - 887.75 mg of Ca
molar mass of Ca - 40 g/mol
therefore number of moles in 1000 ml - 0.88775 g /40 g/mol
molarity of Ca - 0.022 mol/dm³
The reaction involved in present case is:
Net Reaction: Ca + 1/2 O2 → CaO. ..................(1)
In terms of oxidation and reduction, the reaction can be shown at
Oxidation: Ca → Ca2+ + 2e- .................(2)
Reduction: 1/2O2 + 2e- → O2-...................(3)
From, reaction 1 it can be seen that 1 mol of Ca reacts with 1/2 mol of O2 to form 1 mol of CaO.
From, reaction 2 it can be seen that 1 mol of Ca, generates 2 mol of e-.
Thus, when 1/2 mol of Ca is used in reaction, it will lose 1 mol of electrons.
Answer: B) The fireworks give off heat
Answer:

Explanation:
We are asked to find how much heat a sample of copper absorbs when the temperature is increased.
Since we know the mass, temperature increase, and specific heat capacity, we can use the following formula to calculate heat.

The mass of the copper sample is 100 grams, the temperature is changed or increased by 30.0 degrees Celsius, and the specific heat of copper is 0.39 Joules per gram degrees Celsius.
- m= 100 g
- c= 0.39 J/g °C
- ΔT= 30.0 °C
Substitute the values into the formula.

Multiply the first two values. Note that the units of grams cancel.

Multiply again, this time the units of degrees Celsius cancel.

The copper sample absorbs <u>1170 Joules</u> of heat and <u>Choice B </u>is correct.