The <span>simple machine found on the head of the ax is </span>Wedge. A wedge is an inclined plane that can be moved. When an ax is used
to split wood, the ax handle
exerts a force on the blade of
the axe, which is the wedge. That force pushes the wedge
down into the wood. The wedge in turn exerts an
output force splitting the wood in two.
Answer:
0.03g/mL
Explanation:
Given parameters include:
Five μL of a 10-to-1 dilution of a sample; This implies the Volume of dilute sample is given as 5 μL
Dilution factor = 10-to-1
The absorbance at 595 nm was 0.78
Mass of the diluted sample = 0.015 mg
We need to first determine the concentration of the diluted sample which is required in calculating the protein concentration of the original solution.
So, to determine the concentration of the diluted sample, we have:
concentration of diluted sample =
= (where ∝ was use in place of μ in the expressed fraction)
= 0.003 mg/μL
The dilution of the sample is from 10-to-1 indicating that the original concentration is ten times higher; as such the protein concentration of the original solution can be calculated as:
protein concentration of the original solution = 10 × concentration of the diluted sample.
= 10 × 0.003 mg/μL
= 0.03 mg/μL
= 0.03g/mL
Hence, the protein concentration of the original solution is known to be 0.03g/mL
Answer:
0.5133805136 moles.
Explanation:
1 gram of Al2(Co3)3 equals 0.0017112683785004 moles, we need the amount of moles produced in 300 grams of Al2(CO3)3, so we have to multiply 1 gram of Al2(CO3)3 times 300: 0.0017112683785004 x 300, in conclusion,
300 grams of Al2(Co3)3 equals 0.5133805136.
Answer:
It emits 1.64 x 10⁻¹⁸J of energy
Explanation:
The n = 1 is a lower quantum level compared to n = 2.
When a hydrogen atom moves from a higher level to a lower one, it simply emits the energy difference between the two levels.
- If a hydrogen atom moves from a lower energy level to a higher one such as from 1 to 2, they absorb the energy difference to attain the new excited state.
- So, for an electron in the hydrogen atom to move from a higher energy level to a lower one, it must emit 1.64 x 10⁻¹⁸J of energy.