Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally:
All ions are atoms with a charge
It would be static friction which is what you have to overcome when an object is not in motion. When you move an object friction works against it like gravity and air resistance. I hope this helps!
In vacuum, going at 2.99×10^8 m/s.
Answer:
Displacement = 0.707A
Explanation:
To solve for the displacement we know that
Potential energy PE = 1/2Total energy (Etotal)
Therefore 1/2kx^2 = 1/2(1/2KA^2)
Solving for x we have
x^2 = √A^2/2
x = A/√2
x= 0.707A