<h2>
Kinetic energy just before hitting the floor is 324.57 J</h2>
Explanation:
Weight of volleyball player = 650 N
That is
Mass x Acceleration due to gravity = 650
Mass x 9.81 = 650
Mass = 66.26 kg
We also have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Final velocity, v = ?
Displacement, s = 0.5 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 0.5
v = 3.13 m/s
Velocity with which he lands on ground is 3.13 m/s
We have kinetic energy = 0.5 x Mass x Velocity²
Substituting
Kinetic energy = 0.5 x 66.26 x 3.13²
Kinetic energy = 324.57 J
Kinetic energy just before hitting the floor is 324.57 J
Answer:

34.46 V/m
Explanation:
= Vacuum permeability = 
c = Speed of light = 
I = Intensity = 1.575 W/m²
The maximum magnetic field intensity is given by

The magnetic field intensity is 
The maximum electric field intensity is given by

The electric field intensity is 34.46 V/m
Answer:

Explanation:
One mole of a substance contains the same amount of representative particles. These particles can be atoms, molecules, ions, or formula units. In this case, the particles are atoms of titanium.
Regardless of the particles, there will always be <u>6.02*10²³</u> (also known as Avogadro's Number) particles in one mole of a substance.
Therefore, the best answer for 1 mole of titanium is D. 6.02*10²³ atoms.
Answer:
AM has longer wavelength
Explanation:
The relation between the wavelength and teh frequency is given by
v = f x λ
Where, f is the frequency and λ be the wavelength.
It shows that the wavelength is inversely proportional to the frequency.
So, higher the frequency, smaller be the wavelength.
So, FM has high frequency than AM, thus, FM has lower wavelength as compared to AM.