Answer:
Perfectly inelastic collision
Explanation:
There are two types of collision.
1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.
2. Inelastic collision: When the momentum the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.
For a perfectly elastic collision, the two bodies stick together after collision.
Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.
Electric field = potential difference
-----------------------------
distance between plates
Distance between plates = 45
----------
500
= 0.09 meters.
Answer:
22.5J
Explanation:
Here the force is given. Also, the displacement is given as 30cm.
First we should check if all the values are in their standard form.
Here 30cm should be converted to metre by dividing it with 100.
Which would give us 0.3m
Now we use the equation W=force x displacement =75 x 0.3=22.5J
I hope this satisfies you. If u have any further questions please let me know.
I hope u will follow me and make this the brainliest answer.
Answer:
<em>Maximum=70 m</em>
<em>Minimum=26 m</em>
Explanation:
<u>Vector Addition
</u>
Since vectors have magnitude and direction, adding them takes into consideration not only the magnitudes but also their respective directions. Two vectors can be totally collaborative, i.e., point to the same direction, or be totally opposite. In the first case, the magnitude of the sum is at maximum. Otherwise, it's at a minimum.
Thus, the maximum magnitude of the sum is 48+22 = 70 m and the minimum magnitude of the sum is 48-22= 26 m
Answer:
Explanation:
From A to B
distance traveled with velocity
in time
from B to C
distance traveled is 0.5 d with
and
velocity for half-half time
divide 1 and 2 we get
Now average velocity is given by
taking
common