Answer:
Incomplete question: "Each block has a mass of 0.2 kg"
The speed of the two-block system's center of mass just before the blocks collide is 2.9489 m/s
Explanation:
Given data:
θ = angle of the surface = 37°
m = mass of each block = 0.2 kg
v = speed = 0.35 m/s
t = time to collision = 0.5 s
Question: What is the speed of the two-block system's center of mass just before the blocks collide, vf = ?
Change in momentum:
It is neccesary calculate the force:
Here, g = gravity = 9.8 m/s²
If all the energy she put into bending the bow is completely
transmitted to the arrow, then the arrow has the 100 joules
of kinetic energy when it leaves the bow.
Kinetic energy = (1/2) (mass) (speed)²
100 J = (1/2) (0.5 kg) (speed²)
Divide each side by 0.25 kg: 100 J / 0.25 kg = speed²
[ joule ] = [ newton-meter ] = kg-m²/sec²
100 kg-m²/sec² / 0.25 kg = speed²
400 m²/sec² = speed²
Take the square root of each side: speed = √400 m/s
20 m/s
(about 44.7 mph)
Answer:
People firstly believe that the planets move in a circular orbit until Newton came up with his hypothesis by inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
Explanation:
- Everyone assumed the planets were perfect circles until Newton came up with an idea. Slowly people would make maps of the orbits that added circles on circles, and they could never really explain about the movement of the planet. They simply say that planets move on circles but they lacked the math to explain or prove it. Then Newton came up with an idea of inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
-
- Firstly people used their observations and say that the orbits looked like circles, then they developed their models and did the math, and proposed their hypothesizes which were wrong, until Newton came along and tried to match a model that used elliptical orbits and invented the math that allowed him to make predictions with it. His model worked for most planets.
-
- However he could not explain about the planet Mercury for instance since it was a very strange orbit. Then after the Einstein's theory of General Relativity he could also explain very deeply about it.
-
- Scientists and Astronomers made hypothesizes that there was another planet orbiting too close to the sun to see with telescopes, called Vulcan, that explained mercury's orbit before Einstein's theory. Then long after we had telescopes which was good enough to see if there was a planet orbiting closer to the sun than mercury.
The correct answer is Option (C) distance and time
Explanation:
Average speed of any object is defined as the total distance that object travels over the time it takes to travel that distance. In other words, average speed is the total distance divided by the elapsed time.
Therefore, as you can see in the above equation, the two measurements that are essential for the calculation of the average speed are the (total) distance and the (elapsed) time.
Hence, the correct option is C.