<span>A cold front separates a cold, dry air mass from a warm air mass.</span>
Answer:
imma be honest I dint really know
Answer:
x' = 1.01 m
Explanation:
given,
mass suspended on the spring, m = 0.40 Kg
stretches to distance, x = 10 cm = 0. 1 m
now,
we know
m g = k x
where k is spring constant
0.4 x 9.8 = k x 0.1
k = 39.2 N/m
now, when second mass is attached to the spring work is equal to 20 J
work done by the spring is equal to


x'² = 1.0204
x' = 1.01 m
hence, the spring is stretched to 1.01 m from the second mass.
Answer:
Distance is directly proportional to the velocity
Explanation:
In 1929, Edwin Hubble's wrote an article that talked about relationship between the distance and recession speed/velocity of galaxies which led to what is known as the Hubble Law. This law states that galaxies are moving away from the earth at velocities proportional to their distances.
Thus is written as;
v = H_o•d
Where;
v is velocity
d is distance
H_o is Hubble's constant rate of cosmic expansion.
He came to this conclusion by generating a graph known as Hubble's classic graph which was a graph of observed velocity vs distance for nearby galaxies.
Sure. Body can move with uniform speed, and having zero velocity, when velocity becomes zero due to change in direction over time t.
For Example. - An Object is moving with uniform speed in a circular path, then after one complete revolution, it's velocity is zero, but speed still remains uniform
Hope this helps!