Answer:
-1.43 m/s relative to the shore
Explanation:
Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:
where
are the mass of the swimmer and raft, respectively.
are the velocities of the swimmer and the raft after the run, respectively. We can solve for
So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore
Potential Energy= 24m * 14kg * 9.8N/kg = 3292.8J
Answer:
Here we do not have the vector, but I will try to give a kinda general solution to this type of problem.
If the vector is written as (a, b, c) we have that the force in the x-axis is of a Newtons, in the y-axis is of b Newtons, and in the z-axis is of c Newtons.
Then, we can calculate the total magnitude of this force as:
F = √( a^2 + b^2 + c^2)
wich gives us the total magnitude of the force, but not a direction or anything like that, this is just a scalar.