Explanation:
The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given by :

We need to find the current flowing. We know that the rate of change of electric charge is called electric current. It is given by :

At t = 1 s,
Current,

So, the current at t = 1 s is 3 A.
For lowest current,

Hence, this is the required solution.
Answer:
B. The truck and mosquito exert the same size force on each other.
Explanation:
Newton's third law (law of action-reaction) states that
"When an object A exerts a force (action) on an object B, then object B exerts an equal and opposite force (reaction) on object A"
In this case, we can call
object A = the truck
object B = the mosquito
Thereforce according to Newton's third law, the force exerted by the truck on the mosquito is equal in magnitude to the force exerted by the mosquito on the truck (and in opposite direction).
The reason for which the mosquito will experience much more damage is the fact that the mosquito's mass is much smaller than the truck's mass, and since the acceleration is inversely proportional to the mass:

the mosquito will experience a much larger deceleration than the truck, therefore much more damage.
1.Use the balance to find the mass of the object. Record the value on the "Density Data Chart."
2.Pour water into a graduated cylinder up to an easily-read value, such as 50 milliliters and record the number.
3.Drop the object into the cylinder and record the new value in millimeters.
4.The difference between the two numbers is the object's volume. Remember that 1 milliliter is equal to 1 cubic centimeter. Record the volume on the data chart.
5.Compute the density of the object by dividing the mass value by the volume value. Record the density on the data chart.
Answer:
Coefficient of friction.
Explanation:
The amount of friction divided by the weight of an object is equal to the coefficient of friction. It is a dimensional less number. It can be given by :

N is normal force.
= coefficient of friction
