Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
The answer is B. Bye because B those study speed.
S s. S s abbs s sbsbs z sbs
"<em>F = dP/dt. </em> The net force acting on an object is equal to the rate at which its momentum changes."
These days, we break up "the rate at which momentum changes" into its units, and then re-combine them in a slightly different way. So the way WE express and use the 2nd law of motion is
"<em>F = m·A.</em> The net force on an object is equal to the product of the object's mass and its acceleration."
The two statements say exactly the same thing. You can take either one and work out the other one from it, just by working with the units.