Answer:
See explanation.
Explanation:
Hello,
In this case, for the described chemical reaction:
2 HCl(aq) + Mg(OH)2(aq) → MgCl2(aq) + 2 H2O(l)
We can notice there is a 2:1 molar ratio between the moles of hydrochloric acid and magnesium hydroxide, therefore, at the equivalence point:

And in terms of volumes and concentrations we verify:

So we use the given data to proof it:

Therefore, we can conclude the data is wrong by means of the 2:1 mole ratio that for sure was not taken into account. This is also supported by the fact that normalities are actually the same, but the nomality of magnesium hydroxide is the half of the hydrochloric acid normality since the acid is monoprotic and the base has two hydroxyl ions.
Best regards.
Sodium reacts to chlorine and gives NaCl. The balanced reaction is given below:
2Na + Cl₂→ 2NaCl. Two moles Na reacts with one mole Cl₂ and produces two moles of NaCl. Atomic mass of Na= 23, Molar mass of Cl₂= 71, molar mass of NaCl=58.5.
So, 46 g Na reacts with 71 g of Cl₂ and produces (2 X 58.5)g = 117 g of NaCl. As per question Na reacts completely which means Na is the limiting reagent. So, number of moles of Na reacts = number moles of NaCl produced.
NaCl produced= 819 g= (819/58.5) moles= 15.69 moles. Therefore, 15.69 moles = 15.69 X 23 g=360.87 g of Na reacted.
Answer:
"The sun warms up parts of the oceans. Warm waters rise just like warm air rises. So, as the warmer ocean waters begin to rise in a particular area, the cooler ocean waters from a different area will move in to replace the warmer ocean waters, and this creates our ocean currents."
Explanation:
Hope this is helpful :)
Answer: 
Explanation:
Elevation in boiling point is given by:

= Elevation in boiling point
i= vant hoff factor = 3 (number of ions an electrolyte produce on complete dissociation)

= freezing point constant = 
m= molality

Weight of solvent (water)= 1.000 kg
Molar mass of solute
= 142 g/mol
Mass of solute
= 175.0 g


Thus the boiling point of water when 175.0 g of
, a strong electrolyte is dissolved in 1.000 Kg of water is 