The formula for kinetic energy is KE=1/2(mv²). Since both mass and velocity are multiplied by each other, particle with a larger mass needs to be moving slower than a particle with less mass if both have the same kinetic energy. You can think of it as 2KE/m=v² or 2KE/v²=m, If you increase the mass the velocity needs to decrease to keep the same KE value.
I hope this helps. Let me know in the comments if anything is unclear.
Answer:
a. 1.78x10⁻³ = Ka
2.75 = pKa
b. It is irrelevant.
Explanation:
a. The neutralization of a weak acid, HA, with a base can help to find Ka of the acid.
Equilibrium is:
HA ⇄ H⁺ + A⁻
And Ka is defined as:
Ka = [H⁺] [A⁻] / [HA]
The HA reacts with the base, XOH, thus:
HA + XOH → H₂O + A⁻ + X⁺
As you require 26.0mL of the base to consume all HA, if you add 13mL, the moles of HA will be the half of the initial moles and, the other half, will be A⁻
That means:
[HA] = [A⁻]
It is possible to obtain pKa from H-H equation (Equation used to find pH of a buffer), thus:
pH = pKa + log₁₀ [A⁻] / [HA]
Replacing:
2.75 = pKa + log₁₀ [A⁻] / [HA]
As [HA] = [A⁻]
2.75 = pKa + log₁₀ 1
<h3>2.75 = pKa</h3>
Knowing pKa = -log Ka
2.75 = -log Ka
10^-2.75 = Ka
<h3>1.78x10⁻³ = Ka</h3>
b. As you can see, the initial concentration of the acid was not necessary. The only thing you must know is that in the half of the titration, [HA] = [A⁻]. Thus, the initial concentration of the acid doesn't affect the initial calculation.
B A C ( Blood Alcohol Content ) of 0.10 means that there are 0.10 g of alcohol for every dl of blood.
5 L = 50 dl
50 * 0.10 g = 5 g
In his blood is circulating 5 grams of alcohol.
Answer:-
Phosphorus
Explanation:-
In the third period among the elements given, phosphorus is at the most right side among them in the periodic table.
We know that as we go from left to right in the periodic table, the atomic size decreases due to the increase in nuclear charge.
Hence phosphorus is the smallest among them