Answer:
(i) -556 rad/s²
(ii) 17900 revolutions
(iii) 11250 meters
(iv) -55.6 m/s²
(v) 18 seconds
Explanation:
(i) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
α = (10000 − 15000) / 9
α ≈ -556 rad/s²
(ii) Constant acceleration equation:
θ = θ₀ + ω₀ t + ½ αt²
θ = 0 + (15000) (9) + ½ (-556) (9)²
θ = 112500 radians
θ ≈ 17900 revolutions
(iii) Linear displacement equals radius times angular displacement:
s = rθ
s = (0.100 m) (112500 radians)
s = 11250 meters
(iv) Linear acceleration equals radius times angular acceleration:
a = rα
a = (0.100 m) (-556 rad/s²)
a = -55.6 m/s²
(v) Angular acceleration is change in angular velocity over time.
α = (ω − ω₀) / t
-556 = (0 − 15000) / t
t = 27
t − 9 = 18 seconds
Answer:
The radius of the earth is 6,371 km.
The average Earth-Sun distance is 152.09 million km
How many Earths would fit between Earth and the Sun if they are separated by their average distance? Approximately 11,936 Earths.
I didn't really understand the last part, but if you don't get a better answer please mark me as brainliest.
Answer:
Explanation:
No.
There is a difference between energy, called heat in this case, and temperature, which is a measure of the amount of heat contained in a material and is dependent on the material properties.
Temperature difference is what causes heat to move from one body to another.
Two objects at different temperatures placed in contact with one another will cause heat to move from the warmer body to the colder body until the temperature difference is eliminated.
The amount of heat leaving the warmer body will exactly equal the amount of heat absorbed by the cooler body. (assuming isolated system of two bodies) The temperature change within each of those bodies could be vastly different.
Example would be a 2 mm bead of molten lead dropped into a liter glass of tap water. The lead may cool several hundred °C as it solidifies while the water temperature would increase less than 1 °C