A basic mechanical device that is used for applying a force.
Examples are: inclined plane, lever, wedge, wheel and axle, pulley, and screw...Hope this helps, have a BLESSED and wonderful day!
Answer:
6.5e-4 m
Explanation:
We need to solve this question using law of conservation of energy
Energy at the bottom of the incline= energy at the point where the block will stop
Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=
Energy at the point where the block will stop consists of only gravitational potential energy=
Hence from Energy at the bottom of the incline= energy at the point where the block will stop
⇒
⇒
Also 
where
is the mass of block
is acceleration due to gravity=9.8 m/s
is the difference in height between two positions
⇒
Given m=2100kg
k=22N/cm=2200N/m
x=11cm=0.11 m
∴
⇒
⇒
⇒h=0.0006467m=
<span>Greek philosophers had a basic approach to studying the world. They like to question the world and incite debates but they never really bothered to gather any real information, just discussions. Due to this, many ideas about matters were put out to be discussed, but they were never resolved.</span>
The maximum velocity in a banked road, ignoring friction, is given by;
v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.
Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°
Therefore, the road has been banked at 5.24°.
Answer:
D 9.8 m/s^2
Explanation:
The force of gravitational gravity on earth is 9.8 m/s^2