Answer:
25N
Explanation:
100 - 75 = 25
That should be right if im not dumb...
volume of balloon
= 4/3 T R3
= 4/3 x 3.14 x 6.953
= 1405.47 m3
uplift force
= volume of balloon x density of air x 9.8
= = 1405.47 x 1.29 x 9.8
= 1813.05 x 9.8 N
weight of helium gas
= volume of balloon x density of helium x
9.8
= 1405.47 x .179 x 9.8
= 251.58 x 9.8 N
Weight of other mass = 930 x 9.8 N Total weight acting downwards
= 251.58 x 9.8 +930 x 9.8
= 1181.58 x 9.8 N
If W be extra weight the uplift can balance
1181.58 × 9.8 + W × 9.8 = 1813.05 * 9.8
1181.58+W=1813.05
W= 631.47 kg
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.
<h2>
Answer:</h2>
38.14Ω
<h2>
Explanation:</h2>
Let's solve this question using Ohm's law which states that the current (I) flowing through a conductor is directly proportional to the potential difference or voltage (V) across it. Mathematically;
V = I R -------------------(i)
<em>Where</em>;
R is the constant of proportionality called resistance of the conductor and is measured in Ohms (Ω)
<em>From the question;</em>
V = 18.5V
I = 0.485A
<em>Substitute these values into equation (i) as follows;</em>
18.5 = 0.485 x R
<em>Solve for R;</em>
R = 18.5 / 0.485
R = 38.14Ω
Therefore the resistance of the bulb is 38.14Ω
B. Kinetic
Kinetic energy depends on motion and mass