The temperature to which it must be heated in order to fit the shaft is 73.33 ⁰C.
<h3>
Linear expansivity </h3>
The temperature to which it must be heated in order to fit the shaft is calculated as follows;

where;
- ΔT is change in temperature
- ΔL is change in length = 50.04 mm - 50 mm = 0.04 mm
- α is coefficient of linear expansion
- L is original length
ΔT = (0.04)/(50 x 15 x 10⁻⁶)
ΔT = 53.3 ⁰C
<h3>Final temperature</h3>
T₂ - T₁ = ΔT
T₂ = ΔT + T₁
where;
- T₂ is final temperature
- T₁ is initial temperature
T₂ = 53.3 + 20
T₂ = 73.33 ⁰C
Learn more about linear expansivity here: brainly.com/question/14325928
#SPJ1
<h2>
Answer:</h2>
He saves 13.2 minutes
<h2>
Explanation:</h2>
Hey! The question is incomplete, but it can be found on the internet. The question is:
How many minutes did he save?
Let's call:

We know that the 135 miles are on the interstate highway where the speed limit is 65 mph. From this, we can calculate the time it takes to drive on this highway. Assuming Richard maintains constant the speed:

Today he is running late and decides to take his chances by driving at 73 mph, so the new time it takes to take the trip is:

So he saves the time
:

In minutes:

"The speed will increase" is the one among the following choices given in the question that describes the speed of a wave traveling through the rope, if <span>the tension in a rope is increased. The correct option among all the options that are given in the question is the first option. I hope that this is the answer that has come to your help.</span>
B, heat, is the correct answer. Heat is represented by a capital q in thermodynamic equations.
Answer:
43.96 L
Explanation:
We are given that





We know that


Substitute the values


Hence, the volume of balloon at -14.8 degree Celsius=43.96 L