Answer is adaptation. An organism develops a trait over time to help survive in its environment called an adaptation. You could take a giraffe for example. A long time ago giraffes actually had short necks, but now since their food is higher they soon developed a longer neck and this is what we now see in the present. This goes for any artic animal. Polar bears and seals have a white fur adaptation to help them blend in with their environment. A chameleon changes colors in order to hide from predators and sneak up on prey. These are all adaptations
Answer:

Attractive
Explanation:
Data provided in the question
The potential energy of a pair of hydrogen atoms given by 
Based on the given information, the force that one atom exerts on the other is
Potential energy μ = 
Force exerted by one atom upon another

or

or

As we can see that the
comes in positive and constant which represents that the force is negative that means the force is attractive in nature
Answer:
The time is 
The speed is 
Explanation:
From the question we are told that
The height of the cliff is 
Generally from kinematic equation we have that

before the jump the persons initial velocity is u = 0 m/s
So

=> 
Generally from kinematic equation

=> 
=> 