Answer:
the wavelength is 9.8 meters
Explanation:
We can use the relationship:
Velocity = wavelenght*frequency.
Initially we have:
wavelenght = 4.9m
velocity = 9.8m/s
then:
9.8m/s = 4.9m*f
f = 9.8m/s/4.9m = 2*1/s
now, if the velocity is doubled and the frequency remains the same, we have:
2*9.8m/s = wavelenght*2*1/s
wavelenght = (2*9.8m/s)*(1/2)s = 9.8 m
Efficiency is calculated through dividing the actual mechanical advantage by the hypothetical mechanical advantage:
- the actual mechanical advantage is 9J because that's how much work the light bulb doing
- the hypo. mechanical advantage is 100J. Ideally, in a perfect world, the light bulb can convert 100J input into 100J output, but do to resistance and other factors it is not possible.

change the decimal to a percentage:

the light bulb had 9% efficiency
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days
D=Vot+1/2at^2
In this case, there is no initial y velocity so the term Vot=0 so d=1/2at^2
acceleration=acceleration due to gravity=-9.8m/s^2
It falls - 22cm or -0.22m
We have - 0.22=1/2(-9.8)t^2
t^2=(-0.44)/(-9.8)
t=sqrt[0.44/9.8]